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ABSTRACT: Three-dimensional atomic force microscopy (3D-AFM) has
resolved three-dimensional distributions of solvent molecules at solid−
liquid interfaces at the subnanometer scale. This method is now being
extended to the imaging of biopolymer assemblies such as chromosomes or
proteins in cells, with the expectation of being able to resolve their three-
dimensional structures. Here, we have developed a computational method
to simulate 3D-AFM images of biopolymers by using the Jarzynski equality.
It is found that some parts of the fiber structure of biopolymers are indeed
resolved in the 3D-AFM image. The dependency of 3D-AFM images on the
vertical scanning velocity is investigated, and optimum scanning velocities
are found. It is also clarified that forces in nonequilibrium processes are
measured in 3D-AFM measurements when the dynamics of polymers are
slower than the scanning of the probe.

Three-dimensional atomic force microscopy (3D-AFM) is
a cutting-edge technology to observe the distributions of

solvent molecules at solid−liquid interfaces by mapping forces
in 3D space.1,2 It has been applied to mica,1,3 lipid
membranes,4 proteins,5 and DNA surfaces6 to reveal their
interfacial hydration structures. These observations of the
average behavior of fluctuating water molecules suggest its
capability of observing similar effects in mobile molecular
chains in liquids, and there are already a few examples.4,7,8 A
recent paper reported that even the 3D structure of
nanostructures in cells has been visualized with specially
fabricated thin and long probes.9 In principle, 3D-AFM
technology offers the possibility to resolve the 3D organization
of on-surface biopolymers such as chromosomes, cytoskele-
tons, and so on in cells, whose structures at the nanometer
scale are still poorly known. To investigate such possibilities,
there is an urgent demand to establish models computing 3D-
AFM images of fluctuating biopolymers that can be linked to
experiments.
Simulations of 3D-AFM images and a comparison of them

with the experiments are essential to provide a theoretical basis
for explaining what is resolved in imaging.10 Accordingly, the
simulation techniques to compute 3D-AFM images of solvents
on surfaces were developed.11 The free energy profile was first
computed, and then, its derivative gave the so-called mean
force to be compared with the measured forces in 3D-AFM
experiments. To compute the free energy profile, umbrella
sampling11 and perturbation methods11,12 were commonly
employed. This strategy assumes that the system is in
equilibrium throughout a cantilever oscillation cycle, which is

only valid for the case where the motions of solvents are much
faster than that of the scanning probe. Thus, an alternate
method to simulate 3D-AFM images had to be developed for
biopolymers since their motions are slower than the scanning
velocity.13

In our previous paper,13 we developed a method to visualize
the surface topography of biopolymers by calculating the
average forces during scanning, but this did not offer any
insight into the interactions within the biopolymer necessary to
understand 3D-AFM images, which also provide structural
information inside the biopolymer. Here, we have developed a
method to compute 3D-AFM images of biopolymers by using
the Jarzynski equality that relates the work in the non-
equilibrium process to the free energy difference.14 It was
recently shown that the Jarzynski equality is capable of
estimating free energy even for glassy systems that are not in
equilibrium, for which the thermodynamics integration is not
applicable.15 The Jarzynski equality has previously been used
to calculate force−distance curves,16−18 which were compared
with the relevant AFM measurements.19,20 This strategy is
extended to map forces in the 3D space even inside
biopolymers that are fluctuating in the liquid environments
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(Figure 1), which enables us to see the 3D fiber structures of
the polymer. A biopolymer and a probe were simulated using

the bead−spring model.13 The globular structure mimics
chromosomes in the interphase (Figure 1a).21,22 A thin and
long probe was used as a model to mimic that used in a recent
work;9 this is long enough to penetrate inside the biopolymer
(Figure 1b). The force−distance curves were computed at
each x and y position using the Jarzynski equality, and then
then all the curves were merged to give a 3D-AFM image (see
details in the Supporting Information).
Figure 2a shows the simulation system, and Figure 2b

indicates an xz-slice of a 3D-AFM image at the center of
polymer. Figure 2c is the color key for the image. The vertical
scanning or penetration velocity (vscan) is 1 μm/s in Figure 2.
The forces between the penetrating probe and the polymer are
weakly attractive (approximately −20 pN) when the probe is
outside the polymer, originating from the Lennard-Jones force
between the probe and polymer in long-range. On the other
hand, the forces when the probe is inside the polymer are
repulsive and rapidly increase as the probe approaches the
mica surface (where the beads comprising the polymer are
constrained). These repulsive forces are attributed to the work
pushing the polymer away by the probe during its penetration
(see Movie S1 for the pushing motion). The most probable

Figure 1. (a) Schematic of the simulation system and AFM probe
model. There is one biopolymer composed of 2000 beads (mimicking
a chromosome in the interphase) and one AFM probe composed of
50 beads in the system (only part of the probe is shown for clarity).
The biopolymer is colored from red (one end) to blue (the other
end). (b) A cross section of the biopolymer to illustrate the probe
penetrating the polymer (see Movie S1).

Figure 2. Cross sections of the polymer and simulated 3D-AFM images at vscan = 1 μm/s. (a) The structure of the polymer and four horizontal
planes showing the heights of cross sections. (b) An xz-slice (at the center of the polymer) of a simulated 3D-AFM image computed using the
Jarzynski equality. Scanned area was 500 nm × 450 nm with 201 × 91 pixels. (c) Color key for the force. (d) Cross sections of the polymer. (e)
Four xy-slices of the simulated 3D-AFM image computed using the Jarzynski equality. Scanned area was 500 nm × 500 nm with 201 × 201 pixels.
(f) Four xy-slices of the simulated 3D-AFM image computed using thermodynamic integration. Scanned area was 500 nm × 500 nm with 201 ×
201 pixels.
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speed (vmp) of the beads is calculated by (2kBT/m)
1/2, where m

is the mass of beads.23 Using an effective mass accounting for
viscosity (m = 0.2 mg),13 the most probable speed is 0.203
μm/s. Since the motion or configurational relaxation of the
polymer is thus slower than the penetrating speed, the probe
must displace the polymer out of the way during its
penetration. In Figure 2b, we can see several vertical lines
(for example, x = −32.5 and 50 nm). The movies in which
these lines were observed show that the penetrating probe
drags the fiber down for a distance where the lines exist (Movie
S3 and Movie S4). The probe was also found to push the same
parts of fiber down, while the lines are seen (Figure S1).
Accordingly, the vertical lines reflect such “dragging”. This is
also because of the slow relaxation of the polymer: there is
insufficient time for the polymer to avoid the penetrating
probe.
The sliced images of the polymer at various heights are

shown in Figure 2d. The heights where the polymer was cut
are indicated by planes in Figure 2a. The relevant xy-slices of
the 3D-AFM image are shown in Figure 2e. Figure S2 indicates
selected parts where fiber structures match 3D-AFM images
well, and Movie S5 shows the superimposed movie of Figure
2d,e. Again, the forces on the probe outside the polymer are
attractive and repulsive inside. In the xy-sliced images, fiber
structures are seen in some places. Because of the absence of
dragging in the xy-direction, there is no vertical (y-direction)
or horizontal (x-direction) lines in the xy-slices. Thus, the fiber
structure is more clearly seen in xy-slices than in xz-slices.
These fiber structures in force mapping are seen much more
clearly in sequential images (Movie S6). In a comparison of

these fiber structures in the force mapping (Figure 2e) with the
polymer model (Figure 2d), it was found that polymer
structures are indeed, but not completely, resolved in the 3D-
AFM image (Figure S2 and Movie S5). The structure−force
correlation is quantified later.
Figure 2f shows slices of the 3D-AFM image computed

using thermodynamic integration. In all images, only weak
attractive forces (approximately −15 pN) are seen. In this
computation, the probe was stopped at a certain height and the
potential energies were sampled and averaged (Movie S2).
Most forces acting on the probe, which practically act on the
end of the probe, were negative because the polymer and the
end of the probe were located in energetically favorable
positions during the equilibrium sampling process. This is the
reason why attractive forces were observed.
The images computed using thermodynamic integration are

completely different from those using the Jarzynski equality,
since the work in a nonequilibrium process (pushing away
fibers and/or dragging) was not accounted for in thermody-
namic integration. Thus, no clear fiber structures are seen.
Accordingly, it is significant to simulate 3D-AFM images using
the Jarzynski equality in such cases where sample motion is
slower than penetration speed, resulting in nonequilibrium
work being performed.15 In other words, forces measured by
the AFM experiments in the biological samples whose
molecular motions are presumably slower than the probe
penetration are not accurately represented by the mean force.
It is known that for certain systems 3D-AFM images (or

force−distance curves) change depending on the vertical
scanning velocity,19,24−26 and that the free energy profile

Figure 3. Dependency of 3D-AFM images on the scanning velocity (vscan). (a) xy-slices at z = 250 nm and xz-slices at the center of the 3D-AFM
images. Dashed magenta lines in the bottom indicate the height of xy-slice images. (b) The force−distance curves at x = −50 and y = −40 nm. Red
curves are for those obtained using the Jarzynski equality, and black curves are for the thermodynamic integration during the probe approach. Blue
curves show the force−distance curve while retracting. (c) Snapshots when large repulsive forces are detected.
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computed by the Jarzynski equality deviates from the potential
of mean force evaluated using umbrella sampling when probe
velocity is fast.27−29 As such, 3D-AFM images were addition-
ally simulated at vscan = 0.1 (∼0.5vmp), 0.2 (∼vmp), 0.5
(∼2.5vmp), 2 (∼10vmp), 3 (∼15vmp), 4 (∼20vmp), 7.5
(∼36vmp), and 10 μm/s (∼50vmp) (see Movie S7 for a
comparison of probe penetration and motions of the fiber
depending on vscan). The xy- and xz-slices of 3D-AFM images
at six velocities are shown in Figure 3a (see Figure S3 and
Movie S8 for at all velocities but with different contrast). It was
found that the simulated 3D-AFM images reproduced
experimental observations, for example, titin unfolding.19,24−26

The forces at vscan = 0.1 μm/s (∼0.5vmp) are so weak that they
would be difficult to detect in real experiments. A detectable

force is in the range 1−100 pN, depending on the
measurement conditions, and is <10 pN for the ideal condition
in the dynamic mode.30,31 At this velocity, the fiber can avoid
the penetrating probe, because the scanning velocity is slower
than vmp and the forces are close to those obtained by
thermodynamic integration (Figure 3b). Even at vscan = 0.2
μm/s (∼vmp), the fiber can still avoid the penetrating probe,
resulting in weak forces.
As expected from the Maxwell−Boltzmann distribution, the

speeds of almost all beads composing the fiber are less than
2.5vmp. Accordingly, when vscan ≥ 0.5 μm/s (∼2.5vmp), the
motion of the fiber is slower than the scanning probe (see
Movie S7), and a sufficiently detectable force acts when the
probe penetrates the polymer. At vscan = 0.5 μm/s (∼2.5vmp),
we can see some fiber structures in the simulated 3D-AFM
image. At vscan = 1 μm/s (∼5vmp), the image becomes clearer
(Figure 3a and Figure S3). The fiber structures are also
observed at vscan = 2 μm/s (∼10vmp) and 3 μm/s (∼15vmp),
while the forces increase (Figure 3a and Figure S3).
Figure 3b shows the force−distance curves. For approaching

curves (red lines), we can see that the forces increase when
vscan is speeded up. On the other hand, the forces computed by
using thermodynamic integration (black lines) are always close
to the experimental detection limit and those evaluated by the
Jarzynski equality at vscan = 0.1 μm/s, since, as explained, the
motions of beads comprising the fiber are faster than vscan. The
force−distance curves during retraction were computed by
using the Jarzynski equality and are shown by the blue lines.
There is no pushing away motion of fibers and dragging in the
retracting process, so the force−distance curves have, as
expected, no large peak, and there is almost no dependency on
vscan.
When the scanning velocity is in the range 2.5vmp ≤ vscan ≤

15vmp, mainly two peaks are seen at ∼160 and ∼360 nm
(Figure 3b, see Figure S4 for at all velocities but with different
scale). These two peaks (i and ii) originate from dragging and
pushing away, respectively (see Figure S4). Thus, they are
shared among vscan = 0.5 (∼2.5vmp), 1 (∼5vmp), and 2
(∼10vmp) μm/s (also at vscan = 3 (∼15vmp) μm/s, Figure S4).
Figure 3c shows snapshots when the probe feels a strong
repulsion. Irrespective of vmp, the probe pushes away the parts
of fiber colored in blue and green at the peaks i and ii,
respectively. The peak i is broadened because of the dragging
of a part of the fiber colored in blue (Figure S4).
Even at vscan ≥ 4 μm/s (∼20vmp), the faster the vscan is, the

stronger the forces become (Figure 3a, Figures S3 and S4, and
Movie S8). The probe, as mentioned, sometimes cuts the
polymer, and the 3D-AFM images were computed before such
breaks. When changing the contrast (see Figure S3 and Movie
S8), the fiber structures are still seen at vscan = 4 μm/s
(∼20vmp); however, there are some spots of high forces in
addition to the fiber. There are cases where peaks in force
reflect different fibers, and other cases originate from the
dragging (Figure S4). It was found that the dragging increases
when vscan is fast (Figure S5). Another reason for high forces is
that the probe pushes downward not only a single fiber but
also another one behind it (Figure S6). Therefore, the peaks of
forces are not well-separated for each fiber. Accordingly, in the
force−distance curve at vscan = 4 μm/s (Figure 3b, see Figure
S4 for those at vscan = 7.5 and 10 μm/s), there are several peaks
in addition to the two main peaks seen in the range 0.5 μm/s ≤
vscan ≤ 3 μm/s. When vscan is 7.5 (∼36vmp) and 10 (∼50vmp),

Figure 4. Structure−force correlations at all vertical scanning
velocities examined. (a) For vscan ≤ 3 μm/s. (b) For vscan ≥ 3 μm/
s. (c) Averaged correlation against vscan.
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the 3D-AFM images become similar to static noise and the
fiber structure is difficult to see (Figure S3 and Movie S8).
The structure−force correlation (C) at each height was

evaluated by

C z
A

x y z
F x y z

F
x y( )

1
( , , )

( , , )
d d

max
∬ σ=

where A, F, and Fmax are the scanned area, forces at each
position in 3D space (so the 3D-AFM image), and maximum
force in the entire image, respectively. σ is 1 if the position is
within 15 nm from the centers of beads and −1 if not, in which
the position of the beads was shifted upward by 30 nm since
the force is detected approximately 30 nm above the polymer.
At vscan ≥ 4 μm/s, forces before the probe cut the polymer
were used for the analysis, and the area A was changed
according to the number of analyzed force−distance curves.
Figure 4 indicates the dependence of the structure−force

correlation on vscan. Up to 3 μm/s, the correlation increases
when vscan becomes larger (Figure 4a). Further increase of vscan,
however, decreases the correlation because of the static noise
(Figure 4b). Accordingly, the 3D-AFM image best matches the
polymer coordinates at vscan = 3 μm/s (∼15vmp) (Figure 4c).
Thus, there exists an optimum velocity range for vertical scan,
and the force curve would reflect a rather detailed fiber
structure when the scanning velocity is adequately adjusted.
Lastly, a comparison with the experiment in which the 3D

organization of cytoskeletal fibers was visualized by 3D-AFM
measurements9 is shown. This is the best example for
comparison because both the actual structure and the 3D-

AFM image are known. In the 3D-AFM image of cytoskeleton
fibers (Figure 3C,D in ref 9), we can see high force regions
running up and down in 3D space, reflecting the structure of
the cytoskeleton fibers. Note that these images were processed
to reduce the forces that originated by dragging. We mimicked
the straight fiber structure by increasing the stiffness (Figure
5a) and computed its 3D-AFM image (see Supporting
Information for details of the method). In the successive xy-
slices of the 3D-AFM image from higher to lower positions
(Figure 5b and Movie S9), regions of high force appear in
sequence according to their heights as in the experiments. In
the sliced image of lower position, the afterimages of fibers in
the higher position appear as weaker forces because of
dragging. In the xz slice of the 3D-AFM image (Figure 5c),
elongated triangles are visible. This shape reflects the position
of fibers and the dragging afterward while the nanoprobe is
moving down. The triangular shape is caused by the finite
diameter of the probes, which laterally touches the fiber even
when it is not perfectly on the center of the fiber. The dragging
strength decreases as the probe moves away from the center
(Figure S8). These characteristic triangles are also seen in the
experimental images before the force reduction process (Figure
5d). The forces computed using the thermodynamic
integration are very weak (<5 pN) and are usually negative
as in the case of the globular structure (Figure S9). Compared
to the 3D-AFM image using the thermodynamic integration,
the 3D-AFM image using the Jarzynski equality is closer to the
experimental image. A remarkable difference between Figure
5c,d is a reversed contrast. In the simulation, the force is larger
when the probe contacts the fiber and less during dragging

Figure 5. Structure of cytoskeleton fibers and its simulated 3D-AFM images. (a) Top and side views of the simulation system of cytoskeleton fibers.
Scanned area is shown by the magenta box. (b) xy-slices of the 3D-AFM images at positions i, ii, and iii shown in panel a. Color key for the force is
the same as in Figures 2 and 3. (c) xz-slices of the 3D-AFM images at positions iv and v shown in panel a. (d) The experimental images of xz-slices
of the 3D-AFM image of cytoskeleton fibers (left), and an xz-slice where the positions of xy-slices are shown by dashed cyan lines (right).
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after laterally moving the fiber. In the experiment, on the other
hand, the signal is weak above the fiber and gets stronger as the
probe pushes the fiber downward. A plausible explanation is
that cytoskeleton fibers in cells are attached to the cell
membrane, and thus, the force would become larger while the
probe pushes the fiber downward due to the interaction
between fiber and membrane. However, such an interaction is
not implemented on the simulation. Therefore, for relatively
stiff straight fibers, the method developed here shows some
qualitative agreement with the experiment, although the force
magnitude during dragging is different.
In conclusion, we developed a method to compute 3D-AFM

images of biopolymers using the Jarzynski equality. Our
simulation demonstrated that 3D-AFM technology is even
capable of resolving fluctuating biopolymers: some fiber
structures were clearly observed in the simulated 3D-AFM
images. This supports previous 3D-AFM measurements
observing molecular chains.4,7,8 The computed forces increased
when the scanning velocity becomes fast, which qualitatively
reproduced force-scanning velocity relations in some experi-
ments.19,24−26 Moreover, the optimum scanning velocity was
found in the range of several to 10 times faster than the most
probable speed of the biopolymer. It was found that the use of
thermodynamic integration to compute force−distance curves
and 3D-AFM images is unsuitable when the motions of the
samples are slower than the penetration speed of the AFM
probe, because the system is far from thermodynamic
equilibrium. It is expected that the motions of biomolecules
are relatively slow; thus, the forces measured in the AFM
measurements of biomolecules would be forces in a non-
equilibrium process rather than the so-called mean force. The
method developed here is applicable to various fibers in cells
such as DNA and so on by changing parameters such as
stiffness, providing an important theoretical base for such
experimental measurements. As an example, it was applied for
cytoskeleton fibers to be compared with recent experiments.9

Another important issue for the near future is to establish a
method to convert 3D-AFM images to actual fiber structures in
order to utilize 3D-AFM imaging as a tool to reveal structures
of biopolymers. For this, AI using machine learning or some
image analysis technologies are expected to help.
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